1,435 research outputs found

    Neurobehavioral Mechanisms of Temporal Processing Deficits in Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) disrupts temporal processing, but the neuronal sources of deficits and their response to dopamine (DA) therapy are not understood. Though the striatum and DA transmission are thought to be essential for timekeeping, potential working memory (WM) and executive problems could also disrupt timing.The present study addressed these issues by testing controls and PD volunteers 'on' and 'off' DA therapy as they underwent fMRI while performing a time-perception task. To distinguish systems associated with abnormalities in temporal and non-temporal processes, we separated brain activity during encoding and decision-making phases of a trial. Whereas both phases involved timekeeping, the encoding and decision phases emphasized WM and executive processes, respectively. The methods enabled exploration of both the amplitude and temporal dynamics of neural activity. First, we found that time-perception deficits were associated with striatal, cortical, and cerebellar dysfunction. Unlike studies of timed movement, our results could not be attributed to traditional roles of the striatum and cerebellum in movement. Second, for the first time we identified temporal and non-temporal sources of impaired time perception. Striatal dysfunction was found during both phases consistent with its role in timekeeping. Activation was also abnormal in a WM network (middle-frontal and parietal cortex, lateral cerebellum) during encoding and a network that modulates executive and memory functions (parahippocampus, posterior cingulate) during decision making. Third, hypoactivation typified neuronal dysfunction in PD, but was sometimes characterized by abnormal temporal dynamics (e.g., lagged, prolonged) that were not due to longer response times. Finally, DA therapy did not alleviate timing deficits.Our findings indicate that impaired timing in PD arises from nigrostriatal and mesocortical dysfunction in systems that mediate temporal and non-temporal control-processes. However, time perception impairments were not improved by DA treatment, likely due to inadequate restoration of neuronal activity and perhaps corticostriatal effective-connectivity

    A model for transition of 5 '-nuclease domain of DNA polymerase I from inert to active modes

    Get PDF
    Bacteria contain DNA polymerase I (PolI), a single polypeptide chain consisting of similar to 930 residues, possessing DNA-dependent DNA polymerase, 3'-5' proofreading and 5'-3' exonuclease (also known as flap endonuclease) activities. PolI is particularly important in the processing of Okazaki fragments generated during lagging strand replication and must ultimately produce a double-stranded substrate with a nick suitable for DNA ligase to seal. PolI's activities must be highly coordinated both temporally and spatially otherwise uncontrolled 5'-nuclease activity could attack a nick and produce extended gaps leading to potentially lethal double-strand breaks. To investigate the mechanism of how PolI efficiently produces these nicks, we present theoretical studies on the dynamics of two possible scenarios or models. In one the flap DNA substrate can transit from the polymerase active site to the 5'-nuclease active site, with the relative position of the two active sites being kept fixed; while the other is that the 5'-nuclease domain can transit from the inactive mode, with the 5'-nuclease active site distant from the cleavage site on the DNA substrate, to the active mode, where the active site and substrate cleavage site are juxtaposed. The theoretical results based on the former scenario are inconsistent with the available experimental data that indicated that the majority of 5'-nucleolytic processing events are carried out by the same PolI molecule that has just extended the upstream primer terminus. By contrast, the theoretical results on the latter model, which is constructed based on available structural studies, are consistent with the experimental data. We thus conclude that the latter model rather than the former one is reasonable to describe the cooperation of the PolI's polymerase and 5'-3' exonuclease activities. Moreover, predicted results for the latter model are presented

    Controls on gut phosphatisation : the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah)

    Get PDF
    Despite being internal organs, digestive structures are frequently preserved in Cambrian Lagerstätten. However, the reasons for their fossilisation and their biological implications remain to be thoroughly explored. This is particularly true with arthropods--typically the most diverse fossilised organisms in Cambrian ecosystems--where digestive structures represent an as-yet underexploited alternative to appendage morphology for inferences on their biology. Here we describe the phosphatised digestive structures of three trilobite species from the Cambrian Weeks Formation Lagerstätte (Utah). Their exquisite, three-dimensional preservation reveals unique details on trilobite internal anatomy, such as the position of the mouth and the absence of a differentiated crop. In addition, the presence of paired pygidial organs of an unknown function is reported for the first time. This exceptional material enables exploration of the relationships between gut phosphatisation and the biology of organisms. Indeed, soft-tissue preservation is unusual in these fossils as it is restricted to the digestive structures, which indicates that the gut played a central role in its own phosphatisation. We hypothesize that the gut provided a microenvironment where special conditions could develop and harboured a source of phosphorus. The fact that gut phosphatization has almost exclusively been observed in arthropods could be explained by their uncommon ability to store ions (including phosphorous) in their digestive tissues. However, in some specimens from the Weeks Formation, the phosphatisation extends to the entire digestive system, suggesting that trilobites might have had some biological particularities not observed in modern arthropods. We speculate that one of them might have been an increased capacity for ion storage in the gut tissues, related to the moulting of their heavily-mineralised carapace

    Transiently achieved very low low-density lipoprotein cholesterol levels by statin and alirocumab after acute coronary syndrome are associated with cardiovascular risk reduction: the ODYSSEY OUTCOMES trial

    Get PDF
    Aims Long-term, placebo-controlled cholesterol-lowering trials have demonstrated legacy effects (clinical benefits that persist or emerge after trial end). It is unknown whether legacy effects follow a short period of very low low-density lipoprotein cholesterol (LDL-C) levels achieved with statin plus proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor. Methods and results In 18 924 patients with recent acute coronary syndrome, the ODYSSEY OUTCOMES trial compared the PCSK9 inhibitor alirocumab with placebo, each added to high-intensity or maximum-tolerated statin therapy. Patients with two consecutive LDL-C levels <0.39 mmol/L (15 mg/dL) on alirocumab had blinded placebo substitution for the remainder of the trial with continued statin treatment. In post hoc analyses, major adverse cardiovascular events (MACE) in these patients were compared to MACE in propensity score–matched patients from the placebo group with similar baseline characteristics and study medication adherence. In the alirocumab group, 730 patients had blinded placebo substitution at a median of 8.3 months from randomization, after a median of 6.0 months with LDL-C <0.39 mmol/L. They were matched to 1460 placebo patients. Both groups had lower baseline LDL-C and lipoprotein(a) and better study medication adherence than those of the overall cohort. Over a median follow-up of 2.8 years, MACE occurred in 47 (6.4%) alirocumab patients with limited-duration, very low achieved LDL-C vs. 122 (8.4%) matched placebo patients (treatment hazard ratio 0.72; 95% confidence interval 0.51, 0.997; P = 0.047). Conclusion A short period of LDL-C levels <0.39 mmol/L achieved with statin and alirocumab, followed by statin monotherapy, was associated with a lower risk of MACE than statin monotherapy throughout the observation period. Clinical benefit persisted for several years

    Theta-Burst Stimulation-Induced Plasticity over Primary Somatosensory Cortex Changes Somatosensory Temporal Discrimination in Healthy Humans

    Get PDF
    BACKGROUND: The somatosensory temporal discrimination threshold (STDT) measures the ability to perceive two stimuli as being sequential. Precisely how the single cerebral structures contribute in controlling the STDT is partially known and no information is available about whether STDT can be modulated by plasticity-inducing protocols. METHODOLOGY/PRINCIPAL FINDINGS: To investigate how the cortical and cerebellar areas contribute to the STDT we used transcranial magnetic stimulation and a neuronavigation system. We enrolled 18 healthy volunteers and 10 of these completed all the experimental sessions, including the control experiments. STDT was measured on the left hand before and after applying continuous theta-burst stimulation (cTBS) on the right primary somatosensory area (S1), pre-supplementary motor area (pre-SMA), right dorsolateral prefrontal cortex (DLPFC) and left cerebellar hemisphere. We then investigated whether intermittent theta-burst stimulation (iTBS) on the right S1 improved the STDT. After right S1 cTBS, STDT values increased whereas after iTBS to the same cortical site they decreased. cTBS over the DLPFC and left lateral cerebellum left the STDT statistically unchanged. cTBS over the pre-SMA also left the STDT statistically unchanged, but it increased the number of errors subjects made in distinguishing trials testing a single stimulus and those testing paired stimuli. CONCLUSIONS/SIGNIFICANCE: Our findings obtained by applying TBS to the cortical areas involved in processing sensory discrimination show that the STDT is encoded in S1, possibly depends on intrinsic S1 neural circuit properties, and can be modulated by plasticity-inducing TBS protocols delivered over S1. Our findings, giving further insight into mechanisms involved in somatosensory temporal discrimination, help interpret STDT abnormalities in movement disorders including dystonia and Parkinson's disease

    Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation

    Get PDF
    Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds
    • …
    corecore